Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Retraction of articles by T. Liu et al.

T. Liu,^a* Y.-X. Wang,^b Z.-W. Wang,^a Z.-P. Xie^{a,c} and J. Y. Zhu^d

^aCollege of Engineering, Jinggangshan University, Jian 343009, People's Republic of China,
 ^bCollege of Mathematics and Physics, Jinggangshan University, Jian 343009, People's Republic of China,
 ^cDepartment of Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China, and
 ^dDepartment of Information Engineering, Jiangxi University of Science and Technology, Nanchang 330013, People's Republic of China
 Correspondence e-mail: taoliu07@126.com

Received 20 November 2009; accepted 15 December 2009

A series of 29 papers by Liu et al. are retracted.

As a result of problems with the data sets and incorrect atom assignments, 29 papers by Liu *et al.* are retracted. Full details of all the articles are given in Table 1.

Table 1

Details of articles to be retracted, in order of publication.

Title	Reference	DOI	Refcode
Tetrakis(pyrazine-кN)bis(thiocyanato-кN)manganese(II)	Liu & Xie (2007 <i>a</i>)	10.1107/S1600536807026852	EDUMAS
(Dihydroxyglyoxime-κ ² N,N')bis(1,10-phenanthroline-κ ² N,N')copper(II) dinitrate dihydrate	Liu, Wang, Wang & Xie (2007 <i>b</i>)	10.1107/S1600536807028255	EDUVAB
Tetrakis(pyrazine-κN)bis(thiocyanato-κN)zinc(II)	Liu & Xie (2007b)	10.1107/S1600536807028735	RIGQAA
Tetrakis(µ-2-pyridyloxyacetato)bis[(1,10-phenanthroline)(2-pyridyloxyacetato)- lanthanum(III)]	Liu, Wang, Wang & Xie (2007c)	10.1107/S1600536807030917	UDUMIQ
Polymeric KNOF ₂	Liu Wang, Wang & Xie (2007a)	10.1107/S1600536807027195	ICSD 240891
(Dihydroxyglyoxime-κ ² N,N')bis(1,10-phenanthroline-κ ² N,N')cobalt(II) dinitrate dihydrate	Liu, Wang, Wang & Xie (2007 <i>d</i>)	10.1107/S1600536807031224	WIHJED
Tetrakis(µ-2-pyridyloxyacetato)bis[(1,10-phenanthroline)(2-pyridyloxyacetato)- praseodymium(III)]	Liu, Wang, Wang & Xie (2007e)	10.1107/S1600536807032679	WIHQEK
Tetrakis[µ-(2-pyridyloxy)acetato-k ² O:O']bis{(1,10-phenanthroline-k ² N,N')- [(2-pyridyloxy)acetato-kO]neodymium(III)]	Liu, Wang, Wang & Xie (2007f)	10.1107/S1600536807035349	TIGDAP
(Dihydroxyglyoxime-k ² N,N')bis(1,10-phenanthroline-k ² N,N')manganese(II) dinitrate dihydrate	Liu, Wang, Wang & Xie (2007g)	10.1107/S1600536807035076	TIGDET
2-Amino-3,5-dinitrobenzoic acid-ammonia (1/1)	Liu & Zhu (2007j)	10.1107/S1600536807040068	KIKQAX
2-Hydroxy-3,5-dinitrobenzamide monohydrate	Liu & Zhu (2007k)	10.1107/S1600536807039712	KIKQEB
2-(1-Hydroxy-2-pyridyl)acetamide monohydrate	Liu & Zhu (2007 <i>l</i>)	10.1107/S1600536807040652	CIKQOD
$Bis(2,2'-bipyridine-\kappa N,N')bis(thiocyanato-\kappa N)iron(II)$	Liu & Zhu (2007a)	10.1107/S1600536807043486	XIFXOA
catena-Poly[hexakis(μ_2 -anilinoacetamide)bis(1,10-phenanthroline)disamarium(III]	Liu & Zhu (2007b)	10.1107/S1600536807045485	XILNAI
3-Hydroxy-2,4,6-trinitropyridine monohydrate	Liu & Zhu (2007m)	10.1107/S1600536807045230	PILNOO
catena-Poly[hexakis(μ_2 -anilinoacetamide)bis(1,10-phenanthroline)- dipraseodymium(III)]	Liu & Zhu (2007c)	10.1107/\$1600536807047733	SILZET
catena-Poly[[tetra-µ-anilinoacetamidato-bis(1,10-phenanthroline)dicerium(III)]- di-µ-anilinoacetamidato]	Liu & Zhu (2007d)	10.1107/S1600536807050969	GIMZOS
Tetrakis(pyridine- κN)bis(thiocyanato- κN)chromium(II)	Liu & Zhu (2007e)	10.1107/S1600536807051756	WINFAB
2-Ammonio-3-carboxy-5-nitrobenzoate monohydrate	Liu & Zhu (2007 <i>n</i>)	10.1107/S1600536807048477	GINFEP
2-(Benzoylhydrazinocarbonyl)benzoic acid	Liu & Zhu (2007 <i>o</i>)	10.1107/S160053680705204X	TINZIA
Tetrakis(pyridine-кN)bis(thiocyanato-кN)vanadium(II)	Liu & Zhu (2007f)	10.1107/S1600536807054529	HIPZIQ
catena-Poly[[(nitrato- κO)(1,10-phenanthroline- $\kappa^2 N$,N')nickel(II)]- μ -acetamido- $\kappa^2 O$:N]	Liu & Zhu (2007g)	10.1107/S1600536807056504	XIRGIP
catena-Poly[[(nitrato-κO)(1,10-phenanthroline-κ ² N,N')copper(II)]-μ-acetamido- κ ² O:N]	Liu & Zhu (2007h)	10.1107/S1600536807059077	HIQROP
catena-Poly[[(nitrato- κO)(1,10-phenanthroline- $\kappa^2 N$,N')cobalt(II)]- μ -acetamidato- $\kappa^2 O$:N]	Liu & Zhu (2007 <i>i</i>)	10.1107/S1600536807060631	YIQMER
N'-Benzoyl-4-nitronicotinohydrazide	Liu & Zhu (2007 <i>p</i>)	10.1107/\$1600536807053068	CIPVON
N'-(3-Nitro-4-pyridylcarbonyl)pyridine-4-carbohydrazide	Liu & Zhu $(2007q)$	10.1107/S1600536807054876	RIRWEV

Table 1 (continued)

Title	Reference	DOI	Refcode
Ethylenediammonium sulfate	Liu & Zhu (2007r)	10.1107/S1600536807056280	ETDAMS03
Ethylenediammonium perchlorate	Liu & Zhu (2007s)	10.1107/S1600536807059909	HIRYEN
catena-Poly[[(nitrato- κO)(1,10-phenanthroline- $\kappa^2 N$,N')manganese(II)]- μ -nitrato- $\kappa^2 O$:O']	Liu & Zhu (2008)	10.1107/S160053680706254X	MIRROV

References

- Liu, T., Wang, Z.-W., Wang, Y.-X. & Xie, Z.-P. (2007a). Acta Cryst. E63, i170.
- Liu, T., Wang, Z.-W., Wang, Y.-X. & Xie, Z.-P. (2007b). Acta Cryst. E63, m1887–m1888.
- Liu, T., Wang, Z.-W., Wang, Y.-X. & Xie, Z.-P. (2007c). Acta Cryst. E63, m2020–m2021.
- Liu, T., Wang, Z.-W., Wang, Y.-X. & Xie, Z.-P. (2007d). Acta Cryst. E63, m2027–m2028.
- Liu, T., Wang, Z.-W., Wang, Y.-X. & Xie, Z.-P. (2007e). Acta Cryst. E63, m2080–m2081.
- Liu, T., Wang, Z.-W., Wang, Y.-X. & Xie, Z.-P. (2007f). Acta Cryst. E63, m2196– m2197.
- Liu, T., Wang, Z.-W., Wang, Y.-X. & Xie, Z.-P. (2007g). Acta Cryst. E63, m2198–m2199.
- Liu, T. & Xie, Z.-P. (2007a). Acta Cryst. E63, m1820.
- Liu, T. & Xie, Z.-P. (2007b). Acta Cryst. E63, m1908.
- Liu, T. & Zhu, J. Y. (2007a). Acta Cryst. E63, m2506-m2507.

Liu, T. & Zhu, J.-Y. (2007b). Acta Cryst. E63, m2592-m2593. Liu, T. & Zhu, J. Y. (2007c). Acta Cryst. E63, m2659-m2660. Liu, T. & Zhu, J. Y. (2007d). Acta Cryst. E63, m2775-m2776. Liu, T. & Zhu, J. Y. (2007e). Acta Cryst. E63, m2809. Liu, T. & Zhu, J. Y. (2007f). Acta Cryst. E63, m2912. Liu, T. & Zhu, J.-Y. (2007g). Acta Cryst. E63, m2977-m2978. Liu, T. & Zhu, J. Y. (2007h). Acta Cryst. E63, m3108. Liu, T. & Zhu, J. Y. (2007i). Acta Cryst. E63, m3144. Liu, T. & Zhu, J.-Y. (2007j). Acta Cryst. E63, 03829. Liu, T. & Zhu, J. Y. (2007k). Acta Cryst. E63, o3830. Liu, T. & Zhu, J.-Y. (20071). Acta Cryst. E63, 03860. Liu, T. & Zhu, J. Y. (2007m). Acta Cryst. E63, 04112. Liu, T. & Zhu, J. Y. (2007n). Acta Cryst. E63, 04267. Liu, T. & Zhu, J. Y. (2007o). Acta Cryst. E63, 04441. Liu, T. & Zhu, J. Y. (2007p). Acta Cryst. E63, 04527. Liu, T. & Zhu, J. Y. (2007q). Acta Cryst. E63, 04574. Liu, T. & Zhu, J.-Y. (2007r). Acta Cryst. E63, 04660. Liu, T. & Zhu, J. Y. (2007s). Acta Cryst. E63, 04874. Liu, T. & Zhu, J. Y. (2008). Acta Cryst. E64, m28.

 $\beta = 95.897 \ (5)^{\circ}$

Z = 4

V = 3047.8 (10) Å³

Mo $K\alpha$ radiation

 $0.30 \times 0.23 \times 0.18 \text{ mm}$

19706 measured reflections

6028 independent reflections

3118 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

 $\mu = 0.79 \text{ mm}^{-1}$

T = 273 (2) K

 $R_{\rm int} = 0.041$

refinement $\Delta \rho_{\text{max}} = 0.79 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.61 \text{ e } \text{\AA}^{-3}$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(Dihydroxyglyoxime- $\kappa^2 N, N'$)bis(1,10phenanthroline- $\kappa^2 N, N'$)copper(II) dinitrate dihydrate

T. Liu,^a* Z.-W. Wang,^a Y.-X. Wang^b and Z.-P. Xie^c

^aCollege of Engineering, Jinggangshan University, Jian 343009, People's Republic of China, ^bCollege of Mathematics and Physics, Jinggangshan University, Jian 343009, People's Republic of China, and ^cDepartment of Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China Correspondence e-mail: taoliu07@163.com

Received 8 June 2007; accepted 8 June 2007

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.008 Å; R factor = 0.045; wR factor = 0.167; data-to-parameter ratio = 13.6.

In the molecule of the title compound, $[Cu(C_{12}H_8N_2)_2(C_2H_4N_2O_4)](NO_3)_2\cdot 2H_2O$, the Cu atom has a distorted octahedral coordination formed by six N atoms from one dihydroxyglyoxime and two 1,10-phenanthroline ligands. In the crystal structure, molecules are linked into a three-dimensional framework by $O-H\cdots O$ and $C-H\cdots O$ hydrogen bonds and by $\pi-\pi$ stacking interactions, with a centroid–centroid distance of 3.5692 (5) Å (symmetry code: 1 - x, 2 - y, 1 - z).

Related literature

For general background, see: Pope (1983); Pope & Müller (2001); Deisenhofer & Michel (1989); Wall *et al.* (1999); Allen *et al.* (1987). For related literature, see: Wu *et al.* (2003); Pan & Xu (2004); Liu *et al.* (2004); Li *et al.* (2005); Chaudhuri *et al.* (1991); Cervera *et al.* (1997).

Experimental

Crystal data

$$\begin{split} & [\mathrm{Cu}(\mathrm{C}_{12}\mathrm{H}_8\mathrm{N}_2)_2(\mathrm{C}_2\mathrm{H}_4\mathrm{N}_2\mathrm{O}_4)]^- \\ & (\mathrm{NO}_3)_2.2\mathrm{H}_2\mathrm{O} \\ & M_r = 704.07 \\ & \mathrm{Monoclinic}, \ P_{2_1}/c \\ & a = 13.9108 \ (7) \ \mathrm{\mathring{A}} \\ & b = 12.011 \ (3) \ \mathrm{\mathring{A}} \\ & c = 18.338 \ (4) \ \mathrm{\mathring{A}} \end{split}$$

Data collection

Bruker APEXII area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.798, T_{max} = 0.871$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.167$ S = 1.006028 reflections 444 parameters 12 restraints

 Table 1

 Selected geometric parameters (Å, °).

Cu1-N1	1.933 (4)	Cu1-N4	1.950 (3)
Cu1-N2	1.999 (4)	Cu1-N5	1.906 (4)
Cu1-N3	1.959 (4)	Cu1-N6	1.889 (4)
N1-Cu1-N2	83.30 (16)	N2-Cu1-N6	95.51 (15)
N1-Cu1-N3	92.39 (15)	N3-Cu1-N4	83.97 (15)
N1-Cu1-N4	175.33 (15)	N3-Cu1-N5	93.86 (17)
N1-Cu1-N5	93.57 (16)	N3-Cu1-N6	174.47 (16)
N1-Cu1-N6	90.45 (15)	N4-Cu1-N5	89.60 (15)
N2-Cu1-N3	89.54 (15)	N4-Cu1-N6	93.42 (15)
N2-Cu1-N4	93.71 (15)	N5-Cu1-N6	81.23 (17)
N2-Cu1-N5	175.49 (15)		. ,

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C22-H22···O6 ⁱ	0.93	2.55	3.289 (6)	137
C18−H18···O2 ⁱⁱ	0.93	2.42	3.269 (7)	152
C5−H5···O1 ⁱⁱⁱ	0.93	2.55	3.354 (6)	145
$C3-H3 \cdots O5^{iv}$	0.93	2.54	3.387 (7)	151
$O1-H1A\cdots O6^{v}$	0.82	2.00	2.697 (5)	143
$O1-H1A\cdots O5^{v}$	0.82	2.36	2.991 (5)	134

Data collection: *APEX2* (Bruker, 2005); cell refinement: *APEX2*; data reduction: *APEX2*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Siemens, 1996); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Science and Technology Bureau of Jian, Jiangxi Province of China (grant No. 20052817). Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2273).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cervera, B., Ruiz, R., Lloret, F., Julve, M., Cano, J., Faus, J., Bois, C. & Mrozinski, J. (1997). J. Chem. Soc. Dalton Trans. pp. 395-402.
- Chaudhuri, P., Winter, M., Della Vedova, B. P. C., Fleischhauer, P., Haase, W., Floerke, U. & Haupt, H. J. (1991). Inorg. Chem. 30, 4777-4783.
- Deisenhofer, J. & Michel, H. (1989). EMBO J. 8, 2149-2170.
- Li, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19-m21.

- Liu, B.-X., Su, J.-R. & Xu, D.-J. (2004). Acta Cryst. C60, m183-m185.
- Pan, T.-T. & Xu, D.-J. (2004). Acta Cryst. E60, m56-m58.
- Pope, M. T. (1983). Heteropoly and Isopoly Oxometalates. Berlin: Springer-Verlag.
- Pope, M. T. & Müller, A. (2001). Polyoxometalate Chemistry: From Topology via Self-Assembly to Applications. Dordrecht/Boston/London: Kluwer Academic Publishers.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Siemens (1996). SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Wall, M., Linkletter, B., Williams, D., Lebuis, A.-M., Hynes, R. C. & Chin, J. (1999). J. Am. Chem. Soc. 121, 4710-4711.
- Wu, Z.-Y., Xue, Y.-H. & Xu, D.-J. (2003). Acta Cryst. E59, m809-m811.

Acta Cryst. (2007). E63, m1887-m1888 [doi:10.1107/S1600536807028255]

(Dihydroxyglyoxime- $\kappa^2 N$,N')bis(1,10-phenanthroline- $\kappa^2 N$,N')copper(II) dinitrate dihydrate

T. Liu, Z.-W. Wang, Y.-X. Wang and Z.-P. Xie

Comment

In recent years, interest in the chemistry of metal-oxygen clusters has grown because of their applications in areas including catalysis, materials chemistry and biochemistry (Pope, 1983; Pope & Müller, 2001). π - π Stacking between aromatic rings is related to the electron-transfer process in some biological systems (Deisenhofer & Michel, 1989; Wall *et al.*, 1999). Aromatic polycyclic compounds, such as phenanthroline, quinoline and benzimidazole, have commonly shown π - π stacking in metal complexes (Wu *et al.*, 2003; Pan & Xu, 2004; Liu *et al.*, 2004; Li *et al.*, 2005). As a bidentate flexible ligand, dihydroxyglyoxime is also a good ligand with excellent coordination capabilities for generating mono-, bi- or trinuclear complexes, which are commonly used as precursors for the formation of supramolecular architectures (Chaudhuri *et al.*, 1991; Cervera *et al.*, 1997). We report here the crystal structure of the title compound, (I).

In the molecule of (I) (Fig. 1), the ligand bond lengths and angles are within normal ranges (Allen *et al.*, 1987). The six N atoms of one dihydroxyglyoxime and two 1,10-phenanthroline (phen) ligands are coordinated to the Cu atom, in a distorted octahedral arrangement (Table 1). The dihydroxyglyoxime and two phen ligands are each planar, and the phen ligands are nearly perpendicular to each other, with a dihedral angle of 87,21 (5)°.

In the crystal structure, there is a three-dimensional framework (Fig. 2) formed by O—H…O and C—H…O hydrogen bonds (Table 2). There are π - π stacking interactions between adjacent phen ligands with a centroid-centroid distance of 3.543 (2) Å (symmetry code: 1 - x, 2 - y, 1 - z). These π - π stacking interactions and hydrogen bonds lead to a supramolecular network structure (Fig. 2).

Experimental

Copper(II) dinitrate hexahydrate (296 mg, 1 mmol), phen (396 mg, 2 mmol) and dihydroxyglyoxime (120 mg, 1 mmol) were dissolved in ethanol (20 ml). The mixture was heated for 5 h under reflux with stirring. It was then filtered to give a clear solution, into which diethyl ether vapour was allowed to condense in a closed vessel. After being allowed to stand for a few days at room temperature, some blue single crystals suitable for X-ray diffraction analysis precipitated.

Refinement

H atoms of the water molecules were located in a difference synthesis and refined isotropically [O-H = 0.84 (3)-0.86 (9) Å, $U_{iso}(H) = 0.450 (8)-0.59 (5) Å^2]$. The remaining H atoms were positioned geometrically, with O-H = 0.82 Å (for OH) and C-H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C,O)$, where x = 1.2 for aromatic H atoms and x = 1.5 for OH H atoms.

Figures

Fig. 1. The structure of the cationic complex of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Solvent molecules and nitrate anions have been omitted for clarity.

Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.

 $(Dihydroxyglyoxime-\kappa^2 N, N')bis(1,10-phenanthroline-\kappa^2 N, N')copper(II)$ dinitrate dihydrate

Crystal data	
$[Cu(C_{12}H_8N_2)_2(C_2H_4N_2O_4)](NO_3)_2 \cdot 2H_2O$	$F_{000} = 1444$
$M_r = 704.07$	$D_{\rm x} = 1.534 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 5663 reflections
a = 13.9108 (7) Å	$\theta = 2.2 - 24.9^{\circ}$
b = 12.011 (3) Å	$\mu = 0.79 \text{ mm}^{-1}$
c = 18.338 (4) Å	T = 273 (2) K
$\beta = 95.897 (5)^{\circ}$	Prism, blue
$V = 3047.8 (10) \text{ Å}^3$	$0.30\times0.23\times0.18~mm$
<i>Z</i> = 4	
Data collection	

Bruker APEXII area-detector diffractometer	6028 independent reflections
Radiation source: fine-focus sealed tube	3118 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.041$
T = 273(2) K	$\theta_{\text{max}} = 26.4^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.0^{\circ}$
Absorption correction: multi-scan	$h = -17 \rightarrow 17$

(SADABS; Sheldrick, 1996) $T_{\text{min}} = 0.798, T_{\text{max}} = 0.871$ 19706 measured reflections

Refinement

Refinement on F^2

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.045$

 $wR(F^2) = 0.167$

S = 1.00

6028 reflections

444 parameters

12 restraints

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $k = -15 \rightarrow 15$

 $l = -22 \rightarrow 22$

sites

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring

,2

ciel

H atoms treated by a mixture of

 $w = 1/[\sigma^2(F_0^2) + (0.0966P)^2]$

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\text{max}} = 0.005$

 $\Delta \rho_{max} = 0.79 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{min} = -0.61 \text{ e } \text{\AA}^{-3}$

Extinction correction: none

independent and constrained refinement

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Z	$U_{\rm iso}*/U_{\rm eq}$
Cu1	0.77579 (4)	0.75553 (5)	0.03828 (3)	0.0432 (2)
01	0.7961 (3)	0.9961 (3)	0.04774 (18)	0.0483 (9)
H1A	0.8000	0.9954	0.0034	0.072*
O2	0.8338 (3)	0.6031 (3)	0.1481 (2)	0.0563 (10)
H2A	0.8712	0.5921	0.1850	0.085*
O3	0.9324 (4)	0.7551 (5)	0.2458 (3)	0.1201 (19)
H3A	0.9908	0.7545	0.2431	0.180*
O4	0.9039 (5)	0.9954 (5)	0.1835 (4)	0.133 (2)
H4A	0.9520	0.9796	0.2111	0.199*
O5	0.7739 (3)	0.1302 (3)	0.9096 (3)	0.0814 (13)
O6	0.8930 (3)	0.0159 (3)	0.9283 (2)	0.0641 (11)
O7	0.8887 (4)	0.1343 (4)	0.8437 (3)	0.116 (2)
O8	0.7394 (6)	0.8785 (7)	0.2880 (4)	0.166 (3)

09	0.6158 (7)	0.8835 (7)	0.3358 (5)	0.184 (3)
O10	0.6387 (9)	1.0077 (7)	0.2627 (6)	0.345 (11)
011	0.5584 (13)	0.4277 (14)	0.1452 (12)	0.497 (14)
O12	0.701 (2)	0.340 (2)	0.2000 (12)	0.59 (2)
N1	0.6533 (3)	0.7801 (3)	0.0767 (2)	0.0376 (9)
N2	0.7067 (3)	0.8187 (3)	-0.0534 (2)	0.0355 (9)
N3	0.7384 (3)	0.6056 (3)	0.0042 (2)	0.0396 (9)
N4	0.8936 (2)	0.7245 (3)	-0.0073 (2)	0.0343 (9)
N5	0.8376 (3)	0.7047 (3)	0.1298 (2)	0.0391 (9)
N6	0.8219 (2)	0.8937 (3)	0.0767 (2)	0.0350 (9)
N7	0.8515 (3)	0.0921 (4)	0.8922 (3)	0.0569 (12)
N8	0.6658 (6)	0.9287 (9)	0.2899 (5)	0.130 (4)
C1	0.6305 (4)	0.7620 (4)	0.1432 (3)	0.0491 (13)
H1	0.6778	0.7368	0.1789	0.059*
C2	0.5357 (4)	0.7800 (5)	0.1620 (3)	0.0604 (15)
H2	0.5213	0.7658	0.2095	0.072*
C3	0.4666 (4)	0.8173 (4)	0.1120 (3)	0.0557 (15)
Н3	0.4044	0.8291	0.1248	0.067*
C4	0.4874 (3)	0.8387 (4)	0.0409 (3)	0.0461 (13)
C5	0.4204 (4)	0.8802 (4)	-0.0169 (4)	0.0583 (15)
H5	0.3566	0.8924	-0.0081	0.070*
C6	0.4477 (4)	0.9023 (4)	-0.0846 (4)	0.0615 (16)
H6	0.4025	0.9298	-0.1211	0.074*
C7	0.5462 (4)	0.8834 (4)	-0.1004 (3)	0.0497 (13)
C8	0.5808 (4)	0.9063 (4)	-0.1659 (3)	0.0594 (15)
H8	0.5398	0.9356	-0.2044	0.071*
C9	0.6761 (5)	0.8862 (4)	-0.1748 (3)	0.0598 (15)
Н9	0.7001	0.9030	-0.2190	0.072*
C10	0.7367 (4)	0.8403 (4)	-0.1171 (3)	0.0464 (13)
H10	0.8006	0.8247	-0.1242	0.056*
C11	0.6124 (3)	0.8403 (3)	-0.0443 (3)	0.0398 (12)
C12	0.5832 (3)	0.8180 (3)	0.0253 (3)	0.0371 (11)
C13	0.6609 (4)	0.5462 (4)	0.0146 (3)	0.0554 (14)
H13	0.6147	0.5761	0.0422	0.066*
C14	0.6468 (4)	0.4405 (5)	-0.0147 (4)	0.0681 (18)
H14	0.5913	0.4008	-0.0069	0.082*
C15	0.7131 (4)	0.3945 (4)	-0.0545 (3)	0.0674 (17)
H15	0.7034	0.3235	-0.0741	0.081*
C16	0.7968 (4)	0.4544 (4)	-0.0662 (3)	0.0447 (12)
C17	0.8721 (4)	0.4155 (4)	-0.1062 (3)	0.0511 (14)
H17	0.8655	0.3468	-0.1296	0.061*
C18	0.9512 (4)	0.4742 (4)	-0.1111 (3)	0.0533 (14)
H18	0.9997	0.4447	-0.1366	0.064*
C19	0.9650 (3)	0.5830 (4)	-0.0780 (3)	0.0415 (12)
C20	1.0481 (4)	0.6512 (4)	-0.0796 (3)	0.0487 (13)
H20	1.1003	0.6273	-0.1034	0.058*
C21	1.0500 (3)	0.7503 (4)	-0.0464 (3)	0.0479 (12)
H21	1.1040	0.7957	-0.0474	0.057*
C22	0.9725 (3)	0.7865 (4)	-0.0103(3)	0.0429 (12)

supplementary materials

H22	0.9758	0.8560	0.0122	0.051*
C23	0.8906 (3)	0.6243 (4)	-0.0405 (2)	0.0367 (11)
C24	0.8064 (3)	0.5595 (4)	-0.0348 (2)	0.0367 (11)
C25	0.8804 (3)	0.7815 (4)	0.1715 (3)	0.0401 (11)
C26	0.8672 (3)	0.8918 (4)	0.1413 (3)	0.0430 (12)
H11A	0.514 (4)	0.400 (3)	0.116 (3)	0.500 (16)*
H12A	0.673 (10)	0.286 (4)	0.220 (6)	0.59 (5)*
H11B	0.557 (2)	0.4964 (15)	0.1531 (19)	0.450 (8)*
H12B	0.729 (3)	0.317 (3)	0.1644 (18)	0.587 (12)*

Atomic displ	lacement paramete	$rs(\AA^2)$				
	U^{11}	U^{22}	U^{33}	U^{12}	<i>U</i> ¹³	U^{23}
Cul	0.0397 (4)	0.0421 (4)	0.0469 (4)	0.0020 (3)	0.0012 (3)	-0.0024 (3)
O1	0.060(2)	0.0367 (18)	0.047 (2)	0.0085 (15)	0.0012 (18)	-0.0016 (16)
02	0.059 (2)	0.050 (2)	0.057 (3)	0.0037 (17)	-0.0072 (18)	0.0168 (18)
03	0.106 (4)	0.149 (5)	0.097 (4)	0.000 (4)	-0.027 (3)	0.018 (3)
O4	0.148 (6)	0.112 (4)	0.133 (6)	-0.017 (4)	-0.010 (4)	-0.042 (4)
05	0.059 (3)	0.079 (3)	0.107 (4)	0.012 (2)	0.016 (3)	0.008 (3)
O6	0.064 (2)	0.051 (2)	0.076 (3)	0.0083 (19)	0.004 (2)	0.014 (2)
07	0.117 (4)	0.116 (4)	0.124 (5)	0.031 (3)	0.054 (4)	0.053 (4)
08	0.149 (6)	0.189 (8)	0.158 (7)	-0.025 (6)	0.007 (6)	-0.034 (5)
09	0.222 (10)	0.186 (8)	0.142 (7)	0.006 (7)	0.009 (6)	-0.017 (6)
O10	0.49 (2)	0.122 (7)	0.349 (15)	-0.081 (8)	-0.327 (14)	0.109 (8)
O11	0.46 (3)	0.62 (3)	0.47 (3)	0.05 (3)	0.35 (3)	0.10 (3)
012	0.48 (3)	0.94 (6)	0.34 (3)	-0.12 (3)	0.01 (2)	-0.40 (3)
N1	0.037 (2)	0.034 (2)	0.042 (3)	0.0023 (16)	0.0026 (18)	-0.0003 (18)
N2	0.040 (2)	0.030 (2)	0.035 (3)	0.0036 (16)	-0.0011 (18)	-0.0033 (18)
N3	0.035 (2)	0.034 (2)	0.049 (3)	-0.0009 (17)	0.0014 (19)	-0.0016 (19)
N4	0.031 (2)	0.031 (2)	0.040 (2)	0.0034 (15)	-0.0023 (16)	-0.0020 (17)
N5	0.035 (2)	0.040 (2)	0.042 (3)	0.0049 (18)	0.0047 (18)	0.006 (2)
N6	0.034 (2)	0.031 (2)	0.040 (3)	0.0020 (16)	0.0013 (18)	-0.0020 (18)
N7	0.051 (3)	0.054 (3)	0.067 (4)	-0.007 (2)	0.011 (3)	0.009 (3)
N8	0.084 (6)	0.195 (11)	0.108 (7)	-0.026 (6)	0.003 (5)	-0.081 (8)
C1	0.043 (3)	0.058 (3)	0.046 (3)	0.008 (2)	0.005 (2)	0.006 (3)
C2	0.053 (3)	0.070 (4)	0.060 (4)	0.001 (3)	0.016 (3)	-0.002 (3)
C3	0.037 (3)	0.056 (3)	0.077 (5)	-0.002 (2)	0.016 (3)	-0.016 (3)
C4	0.037 (3)	0.032 (3)	0.068 (4)	-0.002 (2)	-0.002 (3)	-0.009 (3)
C5	0.036 (3)	0.050 (3)	0.087 (5)	0.004 (2)	-0.003 (3)	-0.006 (3)
C6	0.051 (3)	0.045 (3)	0.084 (5)	0.010 (3)	-0.020 (3)	-0.007 (3)
C7	0.053 (3)	0.038 (3)	0.054 (4)	0.001 (2)	-0.014 (3)	-0.006 (3)
C8	0.075 (4)	0.048 (3)	0.050 (4)	0.011 (3)	-0.016 (3)	-0.001 (3)
C9	0.092 (5)	0.045 (3)	0.040 (4)	-0.003 (3)	-0.004 (3)	-0.001 (3)
C10	0.060 (3)	0.041 (3)	0.038 (3)	0.004 (2)	0.003 (3)	-0.005 (2)
C11	0.043 (3)	0.027 (2)	0.047 (3)	0.002 (2)	-0.009 (2)	-0.001 (2)
C12	0.034 (3)	0.030 (2)	0.047 (3)	0.0008 (19)	0.000 (2)	-0.005 (2)
C13	0.043 (3)	0.045 (3)	0.079 (4)	-0.004 (2)	0.008 (3)	-0.005 (3)
C14	0.053 (4)	0.045 (3)	0.107 (5)	-0.013 (3)	0.007 (3)	-0.011 (3)

supplementary materials

C15	0.070 (4)	0.035 (3)	0.093 (5)	-0.009 (3)	-0.008 (4)	-0.012 (3)
C16	0.052 (3)	0.033 (3)	0.046 (3)	0.006 (2)	-0.010 (2)	-0.001 (2)
C17	0.072 (4)	0.037 (3)	0.042 (3)	0.009 (3)	-0.003 (3)	-0.007 (2)
C18	0.075 (4)	0.051 (3)	0.033 (3)	0.031 (3)	0.001 (3)	-0.006 (3)
C19	0.046 (3)	0.047 (3)	0.031 (3)	0.013 (2)	-0.002 (2)	0.004 (2)
C20	0.043 (3)	0.063 (4)	0.041 (3)	0.013 (3)	0.008 (2)	0.005 (3)
C21	0.037 (3)	0.060 (3)	0.047 (3)	-0.003 (3)	0.004 (2)	0.003 (3)
C22	0.042 (3)	0.039 (3)	0.047 (3)	0.003 (2)	0.000 (2)	-0.003 (2)
C23	0.038 (3)	0.038 (3)	0.033 (3)	0.007 (2)	-0.005 (2)	0.002 (2)
C24	0.042 (3)	0.032 (2)	0.034 (3)	0.005 (2)	-0.004 (2)	0.000 (2)
C25	0.039 (3)	0.049 (3)	0.032 (3)	0.002 (2)	0.001 (2)	0.002 (2)
C26	0.042 (3)	0.043 (3)	0.043 (3)	-0.002 (2)	0.005 (2)	-0.013 (2)
Competitio	n a u a u a t a u a (1 0)					

Geometric parameters (Å, °)

Cu1—N1	1.933 (4)	C3—C4	1.388 (7)
Cu1—N2	1.999 (4)	С3—Н3	0.9300
Cu1—N3	1.959 (4)	C4—C12	1.414 (6)
Cu1—N4	1.950 (3)	C4—C5	1.428 (7)
Cu1—N5	1.906 (4)	C5—C6	1.361 (8)
Cu1—N6	1.889 (4)	С5—Н5	0.9300
O1—N6	1.372 (4)	C6C7	1.448 (7)
O1—H1A	0.8200	С6Н6	0.9300
O2—N5	1.269 (5)	C7-C8	1.365 (7)
O2—H2A	0.8200	C7_C11	1.408 (7)
O3—C25	1.509 (6)	C8—C9	1.374 (7)
O3—H3A	0.8200	С8—Н8	0.9300
O4—C26	1.525 (6)	C9—C10	1.397 (7)
O4—H4A	0.8200	С9—Н9	0.9300
O5—N7	1.244 (5)	C10—H10	0.9300
06—N7	1.237 (5)	C11—C12	1.403 (6)
07—N7	1,188 (6)	C13—C14	1.384 (7)
08—N8	1.192 (9)	С13—Н13	0.9300
O9—N8	1.268 (9)	C14—C15	1.353 (7)
O10—N8	1.119 (10)	C14—H14	0.9300
011—H11A	0.84 (5)	C15—C16	1.403 (7)
O11—H11B	0.84 (3)	C15—H15	0.9300
O12—H12A	0.86 (9)	C16—C24	1.389 (6)
O12—H12B	0.84 (4)	C16—C17	1.419 (7)
N1—C1	1.309 (6)	C17—C18	1.317 (7)
N1—C12	1.363 (6)	С17—Н17	0.9300
N2—C10	1.305 (6)	C18—C19	1.445 (7)
N2—C11	1.365 (5)	C18—H18	0.9300
N3—C13	1.323 (6)	C19—C23	1.391 (6)
N3—C24	1.360 (5)	C19—C20	1.419 (7)
N4—C22	1.332 (6)	C20—C21	1.336 (6)
N4—C23	1.348 (5)	C20—H20	0.9300
N5—C25	1.302 (6)	C21—C22	1.392 (6)
N6—C26	1.284 (6)	C21—H21	0.9300

C1—C2	1.414 (7)	C22—H22	0.9300
C1—H1	0.9300	C23—C24	1.419 (6)
C2—C3	1.336 (8)	C25—C26	1.440 (6)
С2—Н2	0.9300		
N1—Cu1—N2	83.30 (16)	С7—С6—Н6	119.6
N1—Cu1—N3	92.39 (15)	C8—C7—C11	117.0 (5)
N1—Cu1—N4	175.33 (15)	C8—C7—C6	124.8 (5)
N1—Cu1—N5	93.57 (16)	C11—C7—C6	118.2 (5)
N1—Cu1—N6	90.45 (15)	C7—C8—C9	120.0 (5)
N2—Cu1—N3	89.54 (15)	С7—С8—Н8	120.0
N2—Cu1—N4	93.71 (15)	С9—С8—Н8	120.0
N2—Cu1—N5	175.49 (15)	C8—C9—C10	119.6 (5)
N2—Cu1—N6	95.51 (15)	С8—С9—Н9	120.2
N3—Cu1—N4	83.97 (15)	С10—С9—Н9	120.2
N3—Cu1—N5	93.86 (17)	N2—C10—C9	122.1 (5)
N3—Cu1—N6	174.47 (16)	N2—C10—H10	118.9
N4—Cu1—N5	89.60 (15)	С9—С10—Н10	118.9
N4—Cu1—N6	93.42 (15)	N2-C11-C12	116.5 (4)
N5—Cu1—N6	81.23 (17)	N2-C11-C7	123.0 (5)
N6-01-H1A	109.5	C12-C11-C7	120.5(5)
N5-02-H2A	109.5	N1-C12-C11	116 1 (4)
$C_2 = C_3 = H_3 A$	109.5	N1_C12_C4	122.7(5)
$C_{26} = O_{4} = H_{4A}$	109.5	$C_{11} - C_{12} - C_{4}$	122.7(3) 1211(4)
H11A_011_H11B	118 (3)	N3-C13-C14	121.1(1) 121.6(5)
H12A_012_H12B	111 (7)	N3_013_H13	119.2
C1N1C12	111(7) 118 4 (4)	C_{14} C_{13} H_{13}	119.2
C1 - N1 - Cu1	118.4(4) 1284(3)	C_{15} C_{14} C_{13} C_{15} C_{14} C_{13}	119.2
$C12$ _N1_Cu1	113 1 (3)	$C_{15} = C_{14} = H_{14}$	110.4 (5)
C10 - N2 - C11	118.2 (4)	C_{13} C_{14} H_{14}	110.8
C10-N2-Cu1	110.2(4)	$C_{13} - C_{15} - C_{16}$	119.0
C_{11} N2 C_{11}	131.1(3)	C14 - C15 - H15	119.7 (5)
$C_{11} = N_2 = C_{11}$	110.7(5)	$C_{14} = C_{15} = H_{15}$	120.1
C13 N3 Cu1	1201(3)	$C_{10} = C_{15} = C_{15}$	120.1
C13 N3 $Cu1$	111 4 (2)	$C_{24} = C_{16} = C_{15}$	110.7(3)
C_{24} N3— C_{11}	111.4(3) 117.0(4)	$C_{24} = C_{10} = C_{17}$	110.0(3) 125.2(5)
C22_N4_C23	117.9(4) 120.0(2)	$C_{13} = C_{10} = C_{17}$	123.3(3)
C_{22} N4 C_{11}	130.0(3)	$C_{18} = C_{17} = C_{10}$	121.0 (3)
C_{23} N4—Cui	112.1(3) 122.7(4)	C16_C17_H17	119.2
$O_2 = N_3 = C_{23}$	125.7(4)	C10-C17-H17	119.2
$O_2 = N_3 = Cul$	120.9 (3)	C17 = C18 = C19	122.2 (5)
C_{23} NS $-C_{11}$	115.5 (5)	C1/-C18-H18	118.9
C_{20} No O_{1}	11/.2(4)	C19-C18-H18	117.0 (5)
C_{20} No-Cul	110.4(3)	$C_{23} = C_{19} = C_{20}$	117.0(5)
OI - NO - CUI	125.5 (3)	$C_{23} = C_{19} = C_{18}$	117.1(5)
U = N = 05	120.1 (5)	C_{20} C_{19} C_{10} C	123.9 (3)
$O_1 - N_1 - O_2$	119.4 (3)	$C_{21} = C_{20} = C_{19}$	118.9 (5)
$U_0 - I_N / - U_0$	120.3(3)	C10 C20 H20	120.6
010—N8—08	151.8 (15)	C19 - C20 - H20	120.0
010—N8—09	118.5 (11)	C_{20} C_{21} C_{22}	121.0 (5)
08—N8—09	109.5 (11)	C20—C21—H21	119.5

supplementary materials

N1—C1—C2	121.5 (5)	C22—C21—H21		119.5
N1—C1—H1	119.2	N4—C22—C21		121.8 (4)
C2—C1—H1	119.2	N4—C22—H22		119.1
C3—C2—C1	120.4 (5)	С21—С22—Н22		119.1
С3—С2—Н2	119.8	N4—C23—C19		123.5 (4)
С1—С2—Н2	119.8	N4—C23—C24		116.3 (4)
C2—C3—C4	120.2 (5)	C19—C23—C24		120.2 (4)
С2—С3—Н3	119.9	N3—C24—C16		123.1 (4)
С4—С3—Н3	119.9	N3—C24—C23		116.1 (4)
C3—C4—C12	116.7 (5)	C16—C24—C23		120.8 (4)
C3—C4—C5	125.3 (5)	N5-C25-C26		113.1 (4)
C12—C4—C5	117.9 (5)	N5—C25—O3		121.9 (5)
C6—C5—C4	121.5 (5)	C26—C25—O3		124.8 (5)
С6—С5—Н5	119.2	N6-C26-C25		113.8 (4)
C4—C5—H5	119.2	N6-C26-O4		124.0 (5)
C5—C6—C7	120.7 (5)	C25—C26—O4		122.2 (5)
С5—С6—Н6	119.6		XV	
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —H	H…A	$D^{\cdots}A$	D—H···A
C22—H22···O6 ⁱ	0.93	2.55	3.289 (6)	137
C18—H18····O2 ⁱⁱ	0.93	2.42	3.269 (7)	152
C5—H5····O1 ⁱⁱⁱ	0.93	2.55	3.354 (6)	145
C3—H3···O5 ^{iv}	0.93	2.54	3.387 (7)	151
O1—H1A···O6 ^v	0.82	2.00	2.697 (5)	143
01—H1A…05 ^v	0.82	2.36	2.991 (5)	134
Symmetry codes: (i) $-x+2, -v+1, -z+1$:	(ii) $-x+2$, $-v+1$, $-z$; (i	ii) $-x+1$, $-v+2$, $-z$; (iv) $-x+1$.	-v+1, -z+1: (v) x	v, v+1, z-1
)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Fig. 1

